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Abstract. We use the vector recursion method of Haydock to obtain the transmittance of a 
class of generalized Harper model in one dimension and to study the metal-insulator 
transition in this model. We also study the Argand map of the complex transmission mef- 
ficient which contains information about the phase change of the wavefunctions as they travel 
through the chain. This method of location of the metal-insulator transition is com- 
putationally easy and fast and does not require cumbersome formulae for calculating the 
localization length involving diagonalization of very large matrices, and assumptions of 
exponential localization. Moreover, we may use our methodology to analyse situations 
where we have non-exponential localization. 

1. Introduction 

Recently there has been considerable effort in understanding the nature of electronic 
states in quasi-periodic systems. Practical applications of such studies involve, among 
other things, incommensurate superlattices (Merlin ef a1 1985) and one-dimensional 
quasi-crystals (Kohmotoetal1983, KohmotoandBanavar 1986). Whileit is well known 
that in a one-dimensional system with random potentials all states are localized (Ishii 
1973), and whereas allstates are extended Bloch states in the absence of disorder, it has 
recently been shown (Avron and Simon 1982, Sokoloff 1984, Tang and Kohmoto 1986, 
Griniasty and Fishman 1988, Das Sarma et a1 1990, Thakur et a1 1990) that certain quasi- 
periodic systems in one dimension are capable of showing a transition from localized to 
extended states. In addition, there is interesting behaviour in the intermediate critical 
states. 

In ow present paper, we shall focus on the simple nearest-neighbour tight-binding 
Anderson model with a Hamiltonian of the form 

n n 

where {pn} is the set of annihilation operators for the tight-binding basis orbitals. 
A simple quasi-crystalline model is the so-called Harper model where E,= 

A cos(2xQn + 6) (Andre and Aubry 1980, Simon 1982, Sokoloff 1985). Typically the 
hopping energy V,, is a non-random quantity (equal to V), set equal to unity to fix the 
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energy scale. In this case the period Q-’ of the potential is incommensurate with the 
periodof the lattice (whichequalsunity). When Q is irrational, thespectrum is absolutely 
continuous (i.e. all states are extended) for 0 < A < 2.  It is point like (i.e. all states are 
localized) ifA > 2. In fact, an interestingdualityproperty (Aubryduality) exists between 
the cases A < 2 and A > 2, with the case A = 2 being self-dual. For this last case (A = 2), 
all states are critical and the spectrum is singularly continuous. This self-dual case leads 
to a global scaling properties of the spectrum with a range of scaling indices and an 
associated multifractal character (Tang and Kohmoto 1986). These workers have also 
shown that, if Q is a rational approximant of an irrational number, e.g. Q = Fl- l /Fl ,  
where Fl is the Zth Fibonacci number, then the spectrum consists of Fl bands and F l - l  
gaps. 

The simple Aubry model in one dimension does not have a mobility edge, whereas 
an extension due to Griniasty and Fishman (1988) seems to have an extended localized 
transition at an appropriate mobility edge under certain circumstances. For this model, 
which is sometimes called the generalized Harper model, E. = A cos(2znYQ + 6) and 
y # 1.  For y 2, it has been stated that the problem is equivalent to the corresponding 
random problem (Anderson 1958) and all states are exponentially localized. It may be 
noted that y # 1 gives rise to an inhomogeneity in the period of the potential. It is known 
that inhomogeneity in the amplitudevariation of the potentialgives rise to a localization- 
delocalization transition (Souillard 1987). It will be interesting to study whether such an 
effect arises out of inhomogeneity of the period of the potential. The idea of inhomo- 
geneityof theperiodmaybeeasilynotedifwewrite thepotential ash ~os[kn(Qny-~)] .  
The effective period Q’ = Qn7-l is n dependent and so inhomogeneous. 

Griniasty and Fishman (1988) studied the band centre states for 0 < y < 1 with Q 
irrational within the perturbation theory and concluded that all states are extended. In 
contrast, Das Sarma et a1 (1990) observed, using a heuristic argument and exact numeri- 
calcalculationsofeigenvaluesandwaveamplitudesinfinitesystems, that,forO < y < 1, 
A < 2 ,  there are mobility edges at E, = +(2V - A),  with extended states at the centre of 
the band \El < 2V - A and localized states at the band edges 2V - A < IEi < 2V + A. 
Further, for 1 < y < 2, they find, together with Thouless (1988), that all states away 
fromtheexact bandcentreare localizedandthe Lyapunovexponent (inverse localization 
length) approaches zero extremely slowly at the band centre. 

Our aim is to study wave propagation in such models by numerically calculating the 
transmittance as a function of the energy of the incident wave and by monitoring the 
way in which the phase of the transmission coefficient (which is related to the phase of 
the electronic wavefunction) changes as the wave propagates through the medium. This 
will be done for all values of y including negative values not explicitly reported so far. 
Our approach based on the vector recursion technique of Godin and Haydock (1988) is 
complementary to that of Das Sarma et al. The vector recursion method, as we shall 
indicate, is easily extended to more than one dimension, a work which we shall report 
in a subsequent publication. Our results are, to a large extent, in agreement with those 
ofDasSarmaeta1. justifying theircriticismof theearlier workof GriniastyandFishman. 

2. Formalism 

We shall describe a narrow wire by an Anderson tight-binding Hamiltonian of the type 
described in (1). The chain Will be of length 2 N  

7.N 

HEampiC = 2 [ ~ n ~ l h ~ ,  + V(QlL+iVn + ~ l ! , ~ n + i ) l .  (2) 
lt=l 
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The Vvalues are non-random and the energy is scaled so that V = 1. The diagonal terms 
E, = A cos(2znYQ), where Q is the irrational 'golden mean', (V%- 1)/2. If y = 1 we 
have the usual Aubry model, while for y #  1 we have the Griniasty-Fishman gen- 
eralisation of the Aubry model. For y # 0 the potential is incommensurate with the 
lattice. 

To the two ends n = 1 and n = 2N we attach elementary, perfectly conducting 
semi-infinite leads. The purpose of these leads is to bear the incoming, reflected and 
transmitted waves: 

-- 

H m =  [E"(P;'?. + v"(V',+iCP, f PiQJn+l)l. 
n = Z N + l  

For simplicity we shall take E' = E" = 0 and V'  = V" = Viead. 

travelling Bloch waves of the form 
The solution of the Schrodinger equation in the two leads are known. These are 

(4) t 
ylsadr = v n q a  

n 

with v,, = A  exp(*in@). As the wave travels through the leads, its phase changes by e 
fromonesite to the next. In theelementaryperfectly conducting leads, this phase change 
is determinate: 

where E is the energy associated with the incoming wave. 
We have assumed that transport is ideal in the leads right up to the contacts with the 

sample. This ignores boundary effects. However, if we consider large enough samples, 
such boundary effects are expected to be negligible. 

As we shall see later, the density of states is non-zero in the region - (2V + A) S E =s 
2V + A. Ifwe wish to examine the transmittance within this band, we must choose a VI<, 
which allows this full band pass, i.e. VI,, 3 V + A/2. This is because, in order to have 
propagating states in the leads, we must have a real solution to equation (5). 

The uector recursion technique (Godin and Haydock 1988) now changes to a new 
vector basis with vector annihilation operators 

COS e = ( ~ / 2 v ~ ~ ~ ~ )  (5) 

0" = ("" ). 
cpW+i-. .~ ~ 

In this basis, the lead and sample Hamiltonians become 
N 

HIampie = 2 (AnQ;Qn + Bn+i@A+iQn + BA+iQLQn+i) (6b) 
n=1 

with 

V o v  
E N + l  ) E n = ( ,  o) ,  
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The Schredinger equation may be expressed as a three-term linear difference equation 
involving the 2 x 2 matrices in (64 and the wavefunction vector amplitudes 

Let us now think of a situation where an incoming wave En exp(in8) qi is travelling 
to the right along the input lead. As it reaches the sample, it is scattered. A reflected 
wave 2" r(E) exp(-inO) qT, travels back in the input lead to the left and a transmitted 
wave X , t ( E )  exp(i8) qz travels in the output lead. r(E) and ( E )  are the complex 
reflection and transmission coefficients. Since the solutions in the leads are known, the 
boundary conditions in the new vector basis are 

exp(i0) + rexp(-i8) 

texp(-i8) 
Y" = (; + r ,  

Note here that we have chosen to measure our phases from the basis labelled 0 just 
outside the joint between the leads and the sample. It is also clear that, in the way in 
which we have numbered the new basis, the reflected and transmitted waves both travel 
to the left-hence the negative sign in the exponent of the transmitted wave. 

The general solution of (7) satisfying these boundary conditions may be written in 
terms of the two independent family of solutions of (7) {XJ and {Yn], which satisfy 

X , = I  x1=0 B i + i X n + ~  = (a - AnYn - BnXn-i 
BL,iYn+i = (El - Afi)Yn - BnYn-1 Yo=O Y , = I .  

E" = X,YO + Y,Y,. 

(9) 

(10) 
This solution is 

Direct substitution in (7) and (8) shows that this is indeed the required solution with 
the correct boundary conditions. 

In an exactly similar manner we can discuss the case in which the incoming wave 
travels to the right in the lead labelled 2. After scattering by the sample the reflected 
wave travels to the left in lead 2 and the transmitted wave to the left in lead 1. Here r'(E) 
and t '(E) are the reflection and transmission coefficients of this new problem, with 
boundary conditions 

Yh=(f '  ) Y ; = (  t' exp(-i8) 

1 + r' exp(i8) + r'exp(-io) 
and 

We have a further boundary condition. Since the length of the chain is finite, in the new 
basis the vector chain terminates after N steps, so that 

If we substitute this in (S), (S'), (10) and (10') we immediately obtain an expression for 
the scattering S-matrix: 

.g=X,YL + Y , Y i .  (10') 

E N + I  = 0 f N + l  =o.  (11) 

s = f ') = - [ x , ~ + ~  + Y ~ + ~  e x p ( - i ~ ) ] - l [ ~ ~ + ~  + Y ~ + ~  exp(ie)l. (12) 
t' r' 

In the absence of magnetic fields the time-reversal symmetry gives t = t'. The S-matrix 
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is symmetric. Finally, the transmittance T(E)  = It(E)(’ while the reflectance R(E)  = 

It may be mentioned here that for large system sues (greater than lo3) we have used 
an ordinary recursion technique with single-site transfer matrices (see, e.g. Liu and 
Chao 1986) as opposed to the vector recursion technique described above. The simpler 
method has the advantage of being exponentially faster (in these quasi-periodic models 
or models with varying periods, but not in purely random impurity models) when one 
keeps on adding length elements to the original chain but has the disadvantage of being 
limited to one dimension only. 

Ir(E)I2. 

3. Results and discussion 

The results reported below, except those on Argand maps of the complex transmission 
coefficient, are to a large extent complementary to those of Das Sarma et al. The 
recursion method has the great virtue of giving a measurable quantity (namely the 
transmittance) and the mobility edges can be located relatively easily with smaller size 
systems by looking at the transmittance rather than by first exactly diagonalizing the 
Hamiltonian for a much larger system and then by calculating the Lyapunov exponent 
(or inverse localization length) from the eigenenergies or the eigenfunctions. As an 
added advantage, since the transmission coefficients contain information on the wave- 
function at a particular energy, one can monitor the change in the electronic phase at 
successive scatterings. Further, since by using the transfer matrix method and applying 
the Landauer formulaone can calculate the conductance directly as a function of length, 
one can check the validity of the one-parameter scaling theory. One may also study the 
form of the renormalization group flow within this one-parameter scaling and locate its 
fixed point (or points, if there is more than one). This we shall discuss in a subsequent 
paper. For all the results presented below, the non-random hopping term has been set 
at V = 1. Most of our calculations are done on chains of length 10s. 

Figure l ( a )  shows the transmittance versus energy of the incoming wave for the pure 
Aubry model ( y  = 1.0) with A = 1. The transmittance fluctuations characteristic of 
incommensurate systems are clearly visible. These, in turn, lead to strong fluctuations 
inconductance withchangesin thechemical potential (Thakuretal1990). In figure l(b), 
we show the density of states (DOS) for the same situation. The DOS strongly resembles 
that of a model where the site-diagonal terms are in a Fibonacci sequence. In the 
Aubry model, the site-diagonal terms are incommensurate with the underlying lattice. 
However, the qualitative feature of the DOS (e.g. the gap structures) do not seem to be 
very different in these two cases. These two figures together show that all states are 
extended in this case. This is consistent with the fact that in the Aubry model there is an 
energy-independent metal-insulator transition at A = 2,  which separates the region 
A < 2 where all states are extended and A > 2 ,  where all states are localized. 

Figure 2(a) shows the transmittance at the band centre E = 0 (full curve) and at E = 
0.5 (broken curve) of a more general Harper model with y = 0.5 as a function of A. At 
A = 0 (Bloch case), T(E) = 1 as expected for both the energies. T(E) + 0 as A + 2 for 
both the energies. For E = 0.5, T(E) becomes very small beyond A = 1.5 but truly 
vanishes only for A > 2. This shows very clearly that, for the Harper model with 
0 C y < 1, there exist mobility edges with E, = k(2V - A) .  Since in this plot we have 
fixed E and plotted only positive A-values, this shows up as the existence of a metal- 



6046 C Basu et a1 

3 . 2  
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2.4 
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2.4 

Energy 

Figure 1. (a)Transmittanceve~usenergyoftheincomingwavcfor the Aubrymodelford = 
1. (6)TheoosfortheAubrymodelforA = 1, 

insulator transition at IC = 2V - E .  The existence of very small values of the trans- 
mittanceforI > 1.5fortheE = 0.5caseissimplydue totkite-sizeeffects.Thisisshown 
infigure2(b). BelowI = 1.49 thelogarithmofthe transmittance isvirtuallyindependent 
of size. Around I = 1.49 the transmittance drops exponentially showing exponential 
localization and with an exponent increasing with increasing size. We should emphasize 
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0 0.1, 0.0 t.2 1.6 
A 

-8001 
1.LO 1.44 1.48 1.52 1.56 1.M) 

A 

Figure 2. (0) Transmittance at E = 0 (-) and at E = 0.5 (. . . .) for the Harper model 
withy = 0.5,asabctionofA. (b)Logarithmoftransmittanceat E = OSvenusl at around 
A%= l.SfortheaboveHarpermodel,showingtheeffectof finitesizeon themetal-insulator 
transition: -.-, 2 X lp; .. 1@;---,4 X lc-, I@. 

here that this method of location of the metal-insulator transition is computationally 
easy and fast (taking a CPU time of 21.75 son a HF' 9000/300 desktop computer for a 
singlevalueofl OrEandasystemsizeof 16)  anddoesnot requirecumbersome formulae 
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-2.L -1.2 0 1.2 2.6 

Energy 

Figure 3. The DOS (scaled up by a iactor of 10) and the transmittance vetsus energy, for the 
Harpermodelwith y =  O.7andA = 1,Themobilityedgesareclearlyseen. 

for calculating the localization length involving diagonalization of very large matrices, 
and assumptions of exponential localization. Indeed, as seen from figure 2(b),  we need 
not go to system sizes larger than l v f o r  locating the mobility edges. Moreover, we may 
use our methodology to analyse situations where we have non-exponential localization. 

Figures 3,4 and 5 show the DOS and the transmittance as a function of energy for the 
Harper model with A = 1 and y = 0.7,0.5 and -2.0, respectively. In the first two cases 
there exist mobility edges at E, = 21 since V = A = 1. The case of negative y needs 
special mention and we do that later. In figures 3 and 4 the non-analyticity of the DOS in 
the localized regime is evident from the rapid fluctuations in that region in contrast with 
the relatively smooth behaviour in the extended regime. This contrast is more apparent 
in figure 3 ( y  = 0.7) than in figure 4 ( y  = 0.5) since the localization length tends to 
infinity as y+ 0 (Bloch case). The more elaborate DOS calculations of Das Sarma eta1 
on muchlargersystems are qualitatively similar although they showunsmooth behaviour 
in the localized regime with an integrable divergence at E, much more transparently. 

Let us discuss the location of band and mobility edges for the Harper model. We can 
easily understand this from the following discussion put forward by Das Sarma et a1 for 
positive-y models. Let us first note that 

d&./dn = - [ZhynQ~z~-~ sin(2nnYQ)l. (13) 
For all y <  1, this vanishes as n + m ,  since - E.I - O(nY-'), i.e. locally the E,- 
values do not change much. If one assumes that the wavefunction amplitudes cp. - L", 
then substituting this in the Schrodinger equation, one obtains 

2 - c.2 + 1 = 0 (14) 
whercC. = E - &".If C i  64,thenziscomplex,andIzI = lasappropriateforextended 
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Energy 

Figure 4. Same as in figure 3 but with y = 0.5. 

states. For large n, although E, is locally constant, it can take any value between -A and 
+A for the case 0 < y < 1. Thus, if the maximum possible positive value of C,, namely 
(C&= = E + A G 2, i.e. if E G 2 - A, then the condition of complexity of I is satisfied 
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for all large n. Similarly, if the minimum possible negative value, namely 
(Cn)mD E - A 3  -2, i.e. if E 3 -(2 - A), again the condition of complexity of L is 
satisfied for nll large n. Thus, for 0 < y < 1, the mobility edges were earlier (Das Sarma 
etnl l990)  predicted to be at +(2 - A), while band edges are at r ( 2  + A). We see from 
figures 3 and 4 that, although the effect of the metal-insulator transition clearly shows 
up in the transmittance as a function of energy, finite-size effects cause the DOS to shrink 
inside the band edges, particularly as y-  1. 

We discuss the case of negative ysomewhat more elaborately since it does not seem 
to have been mentioned in the literature before. We see in figure 5 for the case y = -2.0 
that the DOS has its centre shifted to E = A and the mobility edges are at -2 + A and 
2 t A. This asymmetric shift of the centre is common to Harper model with all negative 
y (in the large-length limit). 

For the case y < 0, the argument of the trigonometric functions in equation (13) and 
in the model potential approaches zero for large n. Thus, for negative values for y and 
large n, the site energies E. do not alternate in sign and approach a globally constant 
value of +A,  the approach being more rapid for larger absolute value of y .  Thus, 
asymptotically the band edges shift to - (2 - A) and (2 + A), with the band centre being 
shifted to A (in comparison with q e  case of positive y. where the band centre was at 0). 
It may be noted that, for small values of n close to the origin, the site energies have not 
yet reached the constant asymptotic value and hence give rise to some band states in the 
domain [-(2 + A), -(2 - A)],  but the weighting of these states in the DOS become 
smaller as the chains become larger. This is the reason why we can see a few states in the 
DOS in figure 5 ( y  = -2.0 and A = 1) between E = 3.0 and E = -1.0. As for the 
condition for complexity of the solutions for z ,  we now have (E - A)* S 4. Thus, the 
mobility edges are at -(2 - A) and 2 + A. Thus asymptotically almost all states are 
extended for y < 0, even though for finite-size chains this statement is not exact. It is 
thus interesting to note here that, for y = 0, all states are extended (Bloch states), but 
such is not the case for y # 0. Thus, y = 0 seems to be a singular point. 

One of the statements often made is that localization results from the randomization 
of the phase of the wavefunction as it travels through the system. To study this phenom- 
enon for the present model, in figure 6 we have plotted the Argand map of the complex 
transmission coefficient, i.e. its imaginary versus real part, as the size of the system 
varies. This is directly related to the Argand map of the outgoing wavefunction. 

At A = 1 for y = 1, we have a reasonably well transmitting state (figure 6). The 
Argand map is a regular curve with a few Fourier components. As A increases, the maps 
pick up more Fourier components and resemble more complicated Lissajous figures. 
The scatter about the base curve also increases. The average absolute amplitude remains 
reasonably close to unity, as is seen from figure 6 with A up to 1.8. At around A = 2.0, 
the transmittance precipitately goes down to zero, and the Argand maps collapse to a 
point for A 3 2.0 for large enough lengths. 

In figure 6(c) we have shown enlargements of the Argand maps for the cases A = 
1.98,Z.O and 2.02. These are on either side of the critical state A, = 2. For A = 1.98 the 
map clearly has not collapsed at least to the sizes that we have worked with. However, 
it has a wide spread. For A = 2.02, the map clearly spirals in towards zero. The critical 
state ,Ic = 2 shows a widely random spread and no collapse, at least up to the sizes that 
we have worked with. However, it must be stated that it has been noted in studies of 
conductance (Thakur et al1990) that for A very near but greater than the critical Ac the 
logarithm of conductance goes to zero in steps which become quite long as A approaches 
,Ic. Thus the map for a jwt  localized state may appear not to collapse for very large sizes 
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Figure 7. Argand maps for the Harper model withy = 0.5 and A = 1 at E = 0.95,0.98,1.0 
and 1.02where E, = 1.0. 
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-1.0 1.0 -1.0 

and eventually shows collapse only when we reach sizes of the order of 107-108. This 
extent of uncertainty in the location of the critical values is inherent in any numerical 
work. 

In figure 7 we show Argand maps for fixed y = 0.5 and A = 1 at different energies 
near the mobility edge at E, = 1.0. The behaviours of the maps are very similar to the 
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A-driven transition shown in figure 6. On the extended side the maps are scattered 
around closed Lissajous figures. This scatter increases as we approach the mobility edge, 
becoming almost random very near it. Beyond the mobility edge the maps collapse into 
the origin. 

In figure 8 we show the Argand maps for y = -2.0 and A = 1 for four different 
energieswithin the band: E = 0,0.5,2.0and2.98. All themapsareregularmapswithout 
random scatter or collapse except exactly at the band edges (which are also the mobility 
edges for negative y) .  Except at special energies such as E = 0 and 2.0 (shown here), 
the maps are distorted circles. The distortion is due to the quasi-periodicity in the 
problem. At the special energies E = 0 and 2.0, as we increase the size, no new sectors 
appear. The only effect is the filling up of the existing sectors in the map. 

It would be interesting to Fourier analyse the maps and to study their spectrum. We 
expect the spectrum to change from a finite set of frequencies in the extended regime to 
a continuum in the localized regime, characteristic of chaotic maps. We shall report this 
in a subsequent publication. 
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